

Risk assessment for theoretical gene drive

Keith R Hayes, Geoffrey Hosack, Jeffrey Dambacher, Jessica Ford, Adrien Ickowicz, Scott Foster & David Peel

CSIRO Data61 www.csiro.au

What makes a good risk assessment?

Science quality criteria

- transparent and repeatable: would other investigators be able to duplicate your result?
- falsifiable: makes predictions that are measurable and (at least theoretically) falsifiable?

Decision quality criteria

- precision: does it provide estimates with tight confidence intervals?
- accurate: are its estimates correct?

Honest risk assessments are (Burgman, 2005):

- faithful to the assumptions about the kinds of uncertainty embedded in the assessment;
- carry these uncertainties through the analysis; and,
- represent and communicate them reliably and transparently.

NASEM raises the bar for gene drive

Source: NASEM (2016)

Idealised risk assessment process

Assessment endpoints: What do stakeholders care about?

Issue	Concern	Endpoint
Human health	Could other diseases emerge from the de- crease of mosquitoes	Persistence of transgenic mosquitoes
Human health	Will vector competency of transgenic mosquitoes be altered	Probability of enhanced transmission capacity
Persistence	How can you monitor persistence of flying animals	Persistence of transgenic mosquitoes
Persistence	Sterility not complete and males are able to reproduce and persist	Persistence of transgenic mosquitoes
Persistence	Transgenic mosquitoes have different re- sistance to insecticide	Probability of enhanced insecticide resis- tance
Environment	Sterility will affect all mosquito species	Persistence of transgenic mosquitoes
Environment	Sterile males will effect non-target species	Persistence of transgenic mosquitoes

Hazard analysis for synthetic gene drive

Scale	Failure mode	Possible effect	Reference
Individual	Mutated gRNA causes Cas9 cleavage	New phenotype; deleterious effect on host,	Sander and
	of non-target sequence	such as increased virulence	Joung (2014)
	Cas9 fails to edit or target all alleles	Mosaicism within organisms; reduced drive	Araki et al.
		or gain of function polymorphism	(2014)
	Mutations occur during repair of multi-	Multiple alleles leading to mosaicism in sub-	Sander and
	ple cleavage sites	sequent generations; reduced drive or gain	Joung (2014)
		of function polymorphism	
Population	Assortative mating between new phe-	Drive is reduced or competitive advantage	Scott et al.
	notypes	accrues to more virulent phenotype	(2002)
	Intraspecific (admixture) and interspe-	Gene drive is acquired by, and spreads	David et al.
	cific hybridization	within, non-target population	(2013)
	Unpredicted phenotypes arise due to	Drive failure or failure to produce refractory	Tabachinck
	gene by environment interactions	organisms in the wild	(2003)
	CRISPR/Cas9 influences the innate	GDMO transmission of other pathogens is	Scott et al.
	immune response of the GDMO	enhanced	(2002)
Community	Suppression drive creates open eco-	Niche filled by a more detrimental species	David et al.
	logical niche		(2013)
	Incomplete suppression via (for e.g.)	Loss of herd immunity and disease resur-	Webb (2011)
	increase in drive resistant individuals	gence	
	Horizontal transfer of gene drive to dis-	Gene drive is acquired by, and spreads	Wijayawardena
	tant species	within, non-target population	et al. (2013)

Comprehensive hazard analysis methods

Method	Application to Living Modified Organisms	Reference
Hazard and Operability Study	Modified version of HAZOP, termed GENHAZ recommended as	Watts (1989)
(HAZOP)	hazard identification tool for LMOs by a United Kingdom Royal	
	Commission on Environmental Pollution	
Fault Tree Analysis (FTA)	Applied as heuristic hazard identification tool for the release of	Hayes et al. (2015,
	genetically modified carp, and as a risk quantification tool to male	2013)
	sterile mosquitoes modified with I-PpoI construct	
Event Tree Analysis (ETA)	Simple examples applied to biological systems - no known exam-	Ericson (2005)
	ples of application to LMOs	
Hierarchical Holographic	Applied to identify hazards associated with breaches of HT Canola	Hayes et al. (2004,
Modelling (HHM)	license conditions and male sterile mosquitoes modified with I-	2015)
	Ppol construct	
Failure Modes and Effects	Modified versions applied to biological systems (hull-fouling intro-	Hayes (2002)
Analysis (FMEA)	ductions) - no known examples of application to LMOs	
Qualitative mathematical	Numerous examples of application within ecological systems, to-	Dambacher et al.
modelling (QMM)	gether with demonstration of application to the release of geneti-	(2003); Hayes et al.
	cally modified carp in Australia	(2013)

Fault tree analysis for spread of construct

Expert elicitation: Probability male not sterile

Theta: Pr(Male is fertile)

Bayesian learning with evidence of absence

n = 300, y = 0

Theta

n = 1000, y = 0

Theta

Malaria vectorial capacity WT v G3 v Transgenic

Difference in vectorial capacity risk

QMM: Ecosystem effects of species removal

Model assisted monitoring design

Three take home messages

NASEM and gene-drive RA

• recommends a departure from qualitative status-quo

Stakeholder participation

• should help avoid involuntary risk reaction

Scientific risk assessment:

• is a verb not a noun

References

- Araki, M., Nojima, K., and Ishii, T. (2014). Caution required for handling genome editing technology. *Trends in Biotechnology*, 32:234–237.
- Burgman, M. (2005). *Risks and Decisions for Conservation and Environmental Management*. Cambridge University Press, Cambridge, England.
- Dambacher, J. M., Li, H. W., and Rossignol, P. A. (2003). Qualitative predictions in model ecosystems. *Ecological Modelling*, 161:79–93.
- David, A. S., Kaser, J. M., Morey, A. C., Roth, A. M., and A, A. D. (2013). Release of genetically engineered insects: A framework to identify potential ecological effects. *Ecology and Evolution*, 3:4000–4015.
- Ericson, C. A. (2005). Hazard Analysis Techniques for System Safety. John Wiley and Sons, New Jersey, USA.
- Hayes, K. R. (2002). Identifying hazards in complex ecological systems, part 2: Infections modes and effects analysis for biological invasions. *Biological Invasions*, 4:251–261.
- Hayes, K. R., Barry, S. C., Beebe, N., Dambacher, J. M., De Barro, P., Ferson, S., and Ford, J. e. a. (2015). Risk assessment for controlling mosquito vectors with engineered nucleases, sterile male construct: Final report. Technical report, CSIRO Biosecurity Flagship, Hobart, Australia.
- Hayes, K. R., Greg, g. P. C., Gupta, V., Jessop, R., Lonsdale, W. M., Sindel, B., Stanley, J., and Williams, C. K. (2004). Identifying hazards in complex ecological systems. part 3: Hierarchical holographic model for herbicide tolerant oilseed rape. *Environmental Biosa*, 3:109–128.
- Hayes, K. R., Hosack, G. R., Dana, G. V., Foster, S., Ford, J. H., Thresher, R., Ickowicz, A., Peel, D., Tizard, M., DeBarro, P., Strive, T., and Dambacher, J. M. (2016). Identifying potential adverse effects associated with the release of gene-drive modified organisms. *Journal of Responsible Innovation*.
- Hayes, K. R., Leung, B., Thresher, R., Dambacher, J. M., and Hosack, G. R. (2013). Meeting the challenge of quantitative risk assessment for genetic control techniques: A framework and some methods applied to the common carp (*Cyprinus carpio*) in Australia. *Biological Invasions*, DOI 10.1007/s10530-012-0392-9.

csiro

- Sander, J. D. and Joung, J. K. (2014). Crispr-cas systems for editing, regulating and targeting genomes. *Nature Biotechnology*, 32:347–354.
- Scott, T. W., Takken, W., Knols, B. G. J., and Boete, C. (2002). The ecology of genetically modified mosquitoes. *Science*, 298:117–119.
- Tabachinck, W. J. (2003). Reflections on the *Annopheles gambiae* genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases. *Journal of Medical Entomology*, 40:597–606.
- Watts, S. (1989). Britons pioneer assessment of gene hazards. New Scientist, 1666:32.
- Webb, J. L. A. (2011). The first large-scale use of synthetic insecticide for malaria control in tropical africa: Lessons from liberia, 19451962. *Journal of the History of Medicine and Allied Sciences*, 66:347–376.
- Wijayawardena, B. K., Minchella, D. J., and DeWoody, J. A. (2013). Hosts, parasites, and horizontal gene transfer. *Trends in Parasitology*, 29:329–338.

Thank You

CSIRO Data61

Keith R. Hayes

- t +61 3 6232 5260
- e Keith.Hayes@csiro.au
- w http://people.csiro.au/H/K/Keith-Hayes

CSIRO Data61 www.csiro.au

